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SUMMARY
Despite decades of antibody research, it remains challenging to predict the specificity of an antibody solely
based on its sequence. Twomajor obstacles are the lack of appropriate models and the inaccessibility of da-
tasets for model training. In this study, we curated >5,000 influenza hemagglutinin (HA) antibodies by mining
research publications and patents, which revealed many distinct sequence features between antibodies to
HA head and stem domains. We then leveraged this dataset to develop a lightweight memory B cell language
model (mBLM) for sequence-based antibody specificity prediction. Model explainability analysis showed
that mBLM could identify key sequence features of HA stem antibodies. Additionally, by applying mBLM
to HA antibodies with unknown epitopes, we discovered and experimentally validated many HA stem anti-
bodies. Overall, this study not only advances our molecular understanding of the antibody response to the
influenza virus but also provides a valuable resource for applying deep learning to antibody research.
INTRODUCTION

Discovery and characterization of monoclonal antibodies are

central to the understanding of human immune response, as

well as the design of vaccines and therapeutics.1,2 As exempli-

fied by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) research in the past few years, antibody discov-

ery has dramatically accelerated due to the technological ad-

vancements in single-cell high-throughput screen3 and paired

B cell receptor sequencing.4 Nevertheless, epitope mapping re-

mains a major bottleneck of antibody characterization, which

often involves the determination of individual antigen-antibody

complex structures using X-ray crystallography or cryoelectron

microscopy (cryo-EM). As a result, there is a huge interest in

developing methods for antibody specificity prediction.

Despite the huge diversity of human antibody repertoire, with

at least 1015 antibody sequences,5,6 antibody responses from

different individuals often utilize recurring sequence features to

target a given epitope.7–15 This phenomenon is also known as

convergent or public antibody response. Traditionally, antibody

specificity prediction has mainly relied on biophysical models.16

However, the observation of public antibody response suggests
Im
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that antibody specificity prediction can also be achieved by an

orthogonal, data-driven approach. Specifically, with a suffi-

ciently large sequence dataset of human antibodies that share

a common epitope, a purely sequence-based model can be

trained to predict whether an antibody targets this given epitope

or not.

The application of natural language processing has revolution-

ized protein structure and function prediction as well as protein

design.17–23 Although there are several language models for an-

tibodies,24–26 to the best of our knowledge, none of them enables

antibody specificity prediction. One of the major barriers to

developing a language model for antibody specificity prediction

is the lack of systematically assembled datasets for model

training, which would require both sequence and epitope infor-

mation for individual antibodies. Although many studies have re-

ported sequences of antibodies with known epitopes, such infor-

mation is often not centralized. Databases such as CoV-AbDab,

which documents the sequence and epitope information for

>10,000 antibodies to coronavirus,27 are absent for most patho-

gens, including influenza virus.

Hemagglutinin (HA) is the major antigen of influenza virus

and has a hypervariable globular head domain atop a highly
munity 57, 2453–2465, October 8, 2024 ª 2024 Elsevier Inc. 2453
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Figure 1. Germline gene usages in influenza HA antibodies

(A) The IGHV gene usage, (B) IGK(L)V gene usage, (C) IGHD gene usage, (D) IGHJ gene usage, and (E) IGK(L)J gene usage in antibodies to HA head domain

(orange) and HA stem domain (blue). For comparison, germline gene usages of all antibodies from GenBank are also shown (green). To avoid being confounded

by B cell clonal expansion, a single clonotype from the same donor is considered as one antibody (see STAR Methods). Error bars represent the standard

deviation computed from binomial distribution.
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conserved stem domain.28 In this study, we manually curated

5,561 human antibodies to influenza HA protein from research

publications and patents. Recurring sequence features among

these HA antibodies were identified. Using this dataset, we

further developed a memory B cell language model (mBLM) for

antibody specificity prediction based on seven specificity cate-

gories, including HA head and stem domains. Saliency map

explanation of mBLM revealed that key binding motifs were

learned during specificity prediction. Moreover, we successfully

applied mBLM to discover HA stem antibodies with subsequent

experimental validation.

RESULTS

Examination of a large-scale collection of influenza
antibodies reveals distinct features of HA head and stem
antibodies
We compiled a list of 5,561 human monoclonal antibodies to

influenza HA from 60 research publications and three patents

(Table S1). Information on germline gene usage, sequence, bind-

ing specificity (e.g., group 1, group 2, type A or B, etc.), epitope

(head or stem), and donor status (e.g., infected patient, vaccinee,

etc.), if available, was collected for individual antibodies. Among

these antibodies, which were isolated from 132 different donors,
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565 (10.2%) bind to the globular head domain and 527 (9.5%)

bind to the stem domain. Epitope information was not available

for the remaining 4,469 HA antibodies.

We first aimed to analyze this large dataset to examine the

recurring sequence features of human antibody responses to

influenza HA. Our analysis captured previously known germline

gene preference for HA stem antibodies, such as IGHV1-698,29

and IGHD3-9,7 as well as for HA head antibodies, such as

IGHV2-70 and IGHD4-17 (Figures 1A–1C and S1).30 Other recur-

ring sequence features were also observed in our analysis, such

as the enrichment of IGKV3-11, IGKV3-15, and IGKV3-20 among

HA stem antibodies, as well as IGKV1-33 and IGLV3-9 among

HA head antibodies (Figure 1B). In addition, our analysis discov-

ered five public clonotypes that target influenza type B HA

(clonotypes 13, 16, 56, 89, and 117) that have not been

described previously, to the best of our knowledge

(Figures S2A and S2B; Table S1).

The high prevalence of IGHD4-17 among HA head antibodies

stood out to us. It is known that the second reading frame of

IGHD4-17 encodes a YGD motif (Figure S3A) and can pair with

IGHV2-70 to form a multidonor antibody class targeting the

receptor-binding site in the HA head domain.30 However, our

analysis here demonstrated that IGHD4-17 could pair with other

IGHV genes to target diverse epitopes in the HA head domain



Figure 2. Hydrophobicity and length of CDR

H3 sequences

(A and B) The hydrophobicity scores of (A) CDR H3

and (B) CDR H3 tip, as well as (C) the CDR H3

length, are compared between antibodies to HA

head and HA stem domains. The p values were

computed by two-tailed Student’s t tests. For the

boxplot, the middle horizontal line represents the

median. The lower and upper hinges represent the

first and third quartiles, respectively. The upper

whisker extends to the highest data point within

1.53 inter-quartile range (IQR) of the third quartile,

whereas the lower whisker extends to the lowest

data point within 1.53 IQR of the first quartile. Each

data point represents one antibody. The horizontal

dotted line indicates the mean among antibodies

from GenBank.
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(Figures S3B and S3C; Table S2). Most of these antibodies

contain an IGHD4-17-encoded YGD motif in the complemen-

tarity-determining region (CDR) H3 (Table S2). In fact, CDR H3

with a YGD motif was observed in 12.8% of the HA head anti-

bodies but only in 0.8% and 2.0% of the HA stem antibodies

and all antibodies fromGenBank (Figure S3D; Table S3), respec-

tively. These observations suggest the versatility of the IGHD4-

17-encoded YGD motif in targeting multiple epitopes in the HA

head domain, similar to the ability of IGHV3-53 to engage

different epitopes in the SARS-CoV-2 spike (S) receptor-binding

domain (RBD).31,32

Although the major antigenic sites in the HA head domain

largely consist of hydrophilic and charged amino acids,33–36

HA stem antibodies commonly target a hydrophobic groove.37

Consistently, the CDR H3 sequences of HA stem antibodies

had significantly higher hydrophobicity than those of HA head

antibodies (p = 0.001) (Figure 2A). Such a difference was more

pronounced when we only considered the tip of the CDR H3,

which locates in the center of the CDR H3 sequence and is typi-

cally important for binding (p < 0.0001) (Figure 2B). By contrast,

the CDR H3 lengths of antibodies to HA head and stem domains

did not differ significantly (p = 0.29) (Figure 2C). Overall, these

analyses reveal a prevalence for the YGD motif, specifically in

HA head antibodies, and greater hydrophobicity in HA stem

antibodies.

Antibody specificity prediction using mBLM
Due to the success of applying language models to predict pro-

tein structures and functions,17–23 we postulated that antibodies

with different specificities can be distinguished using a language

model. Specifically, we aimed to pre-train a mBLM to learn the

intrinsic ‘‘grammar’’ of functional antibodies and to subsequently

distinguish between HA head and stem antibodies as well as

antibodies to other antigens. Briefly, mBLM was pre-trained to

predict masked amino acid residues in the context of paired

heavy- and light-chain antibody sequences, using a total of

253,808 unique paired antibody sequences from GenBank38

and Observed Antibody Space39 (see STAR Methods). For anti-

body specificity prediction, mBLM was fine-tuned by using the

final-layer embeddings of the pre-trained mBLM, followed by a

multi-head self-attention block and a multi-layer perceptron

(MLP) block (Figure 3A). Our prediction was based on seven

specificity categories, namely influenza HA head, influenza HA
stem, HIV, SARS-CoV-2 S NTD, SARS-CoV-2 S RBD, SARS-

CoV-2 S S2, and others (none of the above). Because many an-

tibodies in these specificity categories did not have light-chain

sequences available, only heavy-chain sequences were used

for specificity prediction (see STAR Methods). Training and test

sets had a minimum pairwise Levenshtein distance of 10 and

an average of 68 (Figure S4A). In other words, the pairwise

sequence divergence between individual antibody sequences

in the test set and the training set was at least 10 amino acid mu-

tations, insertions, or deletions.

As indicated by the F1 score and confusion matrix analysis,

mBLM had a decent performance on the test set (see STAR

Methods; Figures 3B and 3C). In comparison, we also tested

the performance of a k-nearest-neighbors (kNN) classifier, which

was considered a baseline model, with varying values of k (1, 3,

5, 10, 20, 30, 50, 100, and 500) using the same training and test

sets. Although the F1 score on the test set for the kNN classifier

decreased from 0.68 to 0.53 as k increased from 1 to 500 (Fig-

ure S4B), the confusion matrix for the kNN classifier when k =

1 was quite poor (Figure S4C). Although the confusion matrix

for the kNN classifier improved when k = 50 (Figure 3C), its F1

score on the test set was only 0.57, which was much lower

than that of mBLM (F1 score on the test set = 0.79) (Figure 3B).

We also fine-tuned a general protein language model ESM218

for antibody specificity prediction using the same training set.

This fine-tuned ESM2 model (ESM-Ab) had an F1 score of 0.78

on the test set, which is comparable with mBLM (Figure 3B).

Nevertheless, as compared with mBLM, ESM2-Ab had limited

efficacy in distinguishing between SARS-CoV-2 NTD and RBD

antibodies (Figure 3C). Furthermore, mBLM had only 41 million

parameters, whereas ESM2 had 650 million,18 demonstrating

that mBLM is a more efficient and accurate model for antibody

specificity prediction.

mBLM learned the sequence features of HA stem
antibodies
Next, we aimed to understand what mBLM had learned for anti-

body specificity prediction. Advancements in the field of com-

puter vision have employed gradient-weighted class activation

maps (Grad-CAMs) on convolutional neural network (CNN)-based

architectures to identify the determinants for classification deci-

sions.40,41 Here, Grad-CAM was adopted to analyze the fine-

tuned mBLM by quantifying the importance of individual amino
Immunity 57, 2453–2465, October 8, 2024 2455
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Figure 3. Antibody specificity prediction by mBLM

(A) Model architecture of memory B cell language model (mBLM) is shown. Arrows indicate the information flow in the network from the language model to

antibody specificity prediction, with a final output of specificity class probability. Resi Rep, residual level representation (i.e., the final-layer embeddings from pre-

trained mBLM).

(B) The performance of different antibody specificity predictionmodels was evaluated by F1 score, which represents the globally arithmetic mean of the harmonic

means of precision and recall. Error bar represents standard deviation of 15-fold cross-validation. KNN: a baseline model using k-nearest neighbors algorithm.

ESM2-Ab: pre-trained protein language model ESM2 was fine-tuned (same as mBLM) for antibody specificity prediction.18

(C) Model performance of mBLM on the test set was evaluated by a normalized confusion matrix.
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acid residues for antibody specificity prediction (Figure 4A), where

a higher saliency score represents higher importance.

Based on the saliency score pattern, we further identified six

clusters of HA stem antibodies. These clusters captured several

known sequence features of HA stem antibodies. For example,

most antibodies in cluster 3 were encoded by IGHD3-9 (Fig-

ure 4B), which is known to be enriched among HA stem anti-

bodies (Figure 1C).7 Among IGHD3-9 antibodies in cluster 3,

we observed an FxWL motif in the CDR H3 with high saliency

score (Figure 4C). As described previously, many IGHD3-9 anti-

bodies are featured by a LxYFxWL motif in the CDR H3.7 There-

fore, our result indicates that the fine-tuned mBLM partially

learned a known CDR H3 motif for predicting HA stem anti-

bodies. Other known sequence features of HA stem antibodies
2456 Immunity 57, 2453–2465, October 8, 2024
were also learned by mBLM, including IGHV1-18 with a QxxV

motif in the CDR H3 (Figures S5A and S5B),43 IGHV1-69 with

Y98 (Figures S5A–S5D),8 and IGHV6-1 with an FGV motif in the

CDR H3 (Figures S5E and S5F).54 For antibody residues, the Ka-

bat numbering scheme is used unless otherwise stated.

When we projected the saliency score of individual residues

on the structures, residues closer to the epitope appeared to

have a higher saliency score (Figures 4D and S5G–S5I). Consis-

tently, through systematically analyzing 18 structures of HA stem

antibodies,7,29,42–53 we found that the saliency score of individual

residues in HA stem antibodies and their distance to HA ex-

hibited a moderate negative correlation (Spearman’s rank corre-

lation = �0.38, Figure 4E). This result can be at least partly ex-

plained by the enrichment of residues with high saliency score
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Figure 4. Explanation of mBLM using saliency score

(A) Saliency score for each residue in individual HA stem antibodies was shown as a heatmap. Each row represents a single HA stem antibody. X axis represents

the amino acid residue of the heavy chain. Regions corresponding to CDR H1, H2, H3, and DE loop are indicated. For visualization purpose, only 50 HA stem

antibodies are shown. Six clusters of HA stem antibodies were identified using hierarchical clustering with Ward’s method.

(B) IGHD gene usage among antibodies in cluster 3 is shown.

(C) The saliency score of each CDRH3 residue in IGHD3-9 antibodies within cluster 3 was analyzed. The frequency of each amino acid for residues with a saliency

score >0.5 is shown as a sequence logo. Arrows at the bottom indicate the residues of interest.

(D) Saliency scores are projected onto the structures of four antibodies in cluster 3, namely 39.29 (PDB: 4KVN),42 31.a.83 (PDB: 5KAQ),43 PN-SIA28 (PDB:

8GV6),44 and FI6v3 (PDB: 3ZTJ).45 The color scheme is the same as that in (A).

(E) The relationship between saliency score and distance to the antigen (i.e., HA stem) is shown as a scatterplot. Spearman’s rank correlation coefficient (r) is

indicated. A total of 18 structures of HA stem antibodies in complex with HA were analyzed (PDB: 3FKU, 3GBN, 3SDY, 3ZTJ, 4FQI, 4KVN, 4NM8, 4R8W, 5JW3,

5KAN, 5KAQ, 5K9K, 5K9O, 5K9Q, 5WKO, 6E3H, 6NZ7, and 8GV6).7,29,42–53
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in the CDRs (Figure 4A), which are closer to the binding interface

and information-rich due to their high sequence diversity.

To gain additional understanding of mBLM, we analyzed the

final-layer embeddings of the pre-trained mBLM using t-distrib-

uted stochastic neighbor embedding (t-SNE). Specifically,

heavy-chain sequences in the training set for fine-tuning were

projected into a two-dimensional space according to the em-

beddings. The result showed clustering of antibodies that be-

longed to the same V gene family (Figure S4D). Moreover,

distinct clusters can be observed for antibodies from the same

specificity category (Figure S4E) as well as different HA stem

antibody clusters (Figures 4A and S4F). These observations

demonstrated that antibodies with shared sequence features

were proximal in the embedding space, although it may be ex-

pected because a similar observation was made when antibody

sequences were directly embedded.55
Sequence determinants of an IGHV1-46 HA stem
antibody
Given that the saliency score analysis was able to capture known

sequence features of HA stem antibodies, we postulated that it

could also be applied to identify previously unknown sequence

features. Here, we applied the saliency score analysis to the HA

stem antibody C1-3.7F02, which was isolated from the plasma-

blasts of a healthy donor after receiving a trivalent seasonal vac-

cine and shown to bind to H3 HA.56 Because there were only 12

known IGHV1-46 HA stem antibodies in the dataset that we

assembled (Table S1), we did not expectmBLM tobewell trained

for identifying HA stem antibodies that were encoded by IGHV1-

46. Yet, C1-3.7F02 had a relatively high confidence score of 0.64

in the test set (range from 0 to 1, 1 being the highest confidence).

To understand the sequence determinants of C1-3.7F02, we

analyzed the saliency score of each residue of C1-3.7F02 heavy
Immunity 57, 2453–2465, October 8, 2024 2457
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Figure 5. Sequence determinants for the HA-stem-binding activity of C1-3.7F02

(A) Saliency score of each residue of C1-3.7F0256 is shown as a bar chart. Residues that represent somatic hypermutations are colored in red. Residues of interest

are labeled.

(B) The binding affinity of C1-3.7F02 wild type (WT) (black), N58Smutant (red), andW100aAmutant (blue) IgGs against H3mini-HA wasmeasured by ELISA. Their

EC50 values are indicated. 3A10 is an influenza neuraminidase antibody and serves as a negative control here.58

(C) Binding kinetics of different Fabs against recombinant H3mini-HA57 were measured by biolayer interferometry (BLI). The y axis represents the response. Blue

lines represent the response curves and red lines represent a 1:1 binding model. Binding kinetics were measured for four concentrations of Fab at 3-fold dilution,

ranging from 300 to 33 nM. Dissociation constant (KD) and the goodness of model fitting (R2) are indicated.

(D) Sequence alignment of IGHV1-46 germline sequence with the heavy-chain sequences of C1-3.7F0256 and HMCON1059 was performed using MAFFT.60

Residues that represent somatic hypermutations in the V gene are colored in red.
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chain (Figure 5A). Several residues in the CDRs of C1-3.7F02 had

high saliency scores, includingN58 inCDRH2andW100a inCDR

H3. N58 represented a somatic hypermutation because the

IGHV1-46 germline-encoded amino acid at residue 58 is Ser (Fig-

ure 5D).Germline reversionmutationN58Sweakened theEC50 of

C1-3.7F02 immunoglobulin G (IgG) to H3mini-HA by�50% (Fig-

ure 5B) and theKDof C1-3.7F02Fab toH3mini-HA,whichwas an

HA-stem-only construct designed based on human H3N2

A/Finland/486/2004 HA,57 by >3-fold (Figure 5C). Our result indi-

cates that somatic hypermutation S58N is important for the affin-

ity maturation of C1-3.7F02 against HA stem. To probe for the

importance of W100a in HA-stem binding, mutation W100aA

was introduced. W100aA reduced the binding of both

C1-3.7F02 IgG and Fab by at least one order of magnitude in

terms of EC50 and KD, respectively. This result indicates that

W100a is also a key residue for HA-stem binding.

Besides C1-3.7F02, there was only one other IGHV1-46

antibody targeting group 2 HA stem in our dataset, namely
2458 Immunity 57, 2453–2465, October 8, 2024
HMCON1059 (Table S1). C1-3.7F02 and HMCON10 were iso-

lated from different donors.56,59 Although both C1-3.7F02 and

HMCON10 had a relatively large number of somatic hypermuta-

tions in the heavy-chain V gene (19 and 16 amino acids, respec-

tively), S58N was the only common somatic hypermutation

between them (Figure 5D). This observation further implies that

S58N plays a role in the affinity maturation of other IGHV1-46 an-

tibodies against group 2 HA stem.

Several somatic hypermutations in the framework region 3 of

C1-3.7F02 also had high saliency scores, with the top three being

G76, L78, and D85 (Figure 5A). To test their importance for HA-

stem binding, germline reversion mutations were introduced at

these three residues, namely G76S, L78V, and D85E. Both G76S

and L78Vweakened the KD by 2-fold, whereas D85E had amilder

impact on KD (Figure S6). In fact, G76 and L78 locate within the

heavy-chain DE loop (residues 71–78), which is often referred to

asCDRH4andsometimes involves inantigenbinding.61Together,

our findings indicate that somatic hypermutations in framework
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Figure 6. Sequence determinants for the HA-stem-binding activity of 013-10 3F02

(A) Saliency score of each residue of 013-10 3F0262 is shown as a bar chart. Residues that represent somatic hypermutations are colored in red. Residue 56 is

labeled.

(B) The binding affinity of 013-10 3F02WT (black) and K56Nmutant (red) IgGs against H1mini-HA wasmeasured by ELISA. Their EC50 values are indicated. 3A10

is an influenza neuraminidase antibody and serves as a negative control here.58

(C) Sequence alignment of IGHV3-30 germline sequence with the heavy-chain sequences of 013-10 3F02,62 3I14,64 FI3082,65 310-18C10,42 and 81.3942 was

performed using MAFFT.60 Residues that represent somatic hypermutations in the V gene are colored in red.
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region 3, particularly the DE loop, contribute to the affinity matura-

tion of C1-3.7F02.

Sequence determinants of an IGHV3-30 HA stem
antibody
We further performed a saliency score analysis on another HA

stem antibody 013-10 3F02, which was encoded by IGHV3-30

and shown to bind to group 1 HA.62 Similar to C1-3.7F02, 013-

10 3F02 was also isolated from the plasmablasts of a healthy

donor after receiving a trivalent seasonal vaccine62 and had a

decent confidence score of 0.54 in the test set. Although

IGHV3-30 was the third most commonly used IGHV gene among

HA stemantibodies (7.6%, Figure 1A), the sequencedeterminants

of IGHV3-30 HA stem antibodies are not as well characterized as

those encoded by IGHV1-69 (34% among HA stem antibodies)

and IGHV1-18 (6.0% among HA stem antibodies).8,43 K56 of

013-10 3F02, which represented a somatic hypermutation in the

CDR H2, had a high saliency score (Figure 6A). Reverting K56 to

the IGHV3-30 germline-encodedN56weakened the binding affin-

ity of 013-10 3F02 to H1 mini-HA, which was an HA-stem-only

construct designed based on human H1N1 A/Brisbane/59/2007

HA,63 by 10-fold (Figure 6B). Our dataset contained 64 IGHV3-

30 HA stem antibodies from 17 different donors (Table S1).
Most of these IGHV3-30 HA stem antibodies (39/64) were en-

coded by IGHD3-9, which can result in a CDR H3-dominant bind-

ing mode that is largely independent of IGHV gene usage.7

Although none of the 39 IGHV3-30/IGHD3-9 HA stem antibodies

contained N56K, it was observed in 5 out of 25 (20%) IGHV3-

30/non-IGHD3-9 HA stem antibodies (Figure 6C). These five anti-

bodies, including 013-10 3F02, were isolated from five out of

seven donors who had IGHV3-30/non-IGHD3-9 HA stem anti-

bodies. The enrichment of N56K among IGHV3-30/non-IGHD3-

9 HA stem antibodies suggests that N56K facilitates their affinity

maturation. Together with the analysis above on C1-3.7F02, our

results suggest that mBLM can help identify somatic hypermuta-

tions that are critical for affinity maturation.

Discovering HA stem antibodies using mBLM
There are two non-overlapping epitopes in the HA stem, namely

central stem epitope46,47 and anchor stem epitope.66,67 After we

had assembled our HA antibody dataset (Table S1), a study re-

ported 60 HA antibodies to the central stem epitope and 38 to

the anchor stem epitope.68 Although these antibodies were not

in the HA antibody dataset that we assembled (Table S1), they

provided an additional opportunity to test the fine-tuned

mBLM. Among the 60 antibodies to the central stem epitope,
Immunity 57, 2453–2465, October 8, 2024 2459



Figure 7. Discovery of HA stem antibodies

by mBLM

(A and B) mBLM was applied to predict the spec-

ificity of (A) 60 antibodies to central stem epitope

(left) and 38 to anchor stem epitope (right) that have

been reported,68 as well as (B) 4,453 HA antibodies

with unknown epitopes (HA unk) in the dataset that

we assembled. The fraction of antibodies that were

predicted to bind to HA stem domain (predicted as

HA stem), HA head domain (predicted as HA head),

or to other antigens (not predicted as HA) is shown.

(C) Using ELISA, the binding of 30 HA unk anti-

bodies that were predicted as HA stem antibodies

was tested against H1 mini-HA63 and H3 mini-

HA,57 both of which were HA-stem-only con-

structs. The confidence score of each of these

antibodies as HA stem antibodies as well as their

sequence divergence to the most similar anti-

bodies in the training set (min dist to training set)

are shown as heatmaps. Four known HA stem

antibodies (051-09 5A02, 051-09 5E03, 310-18C3,

and FI6v3)45,62,69 were included as positive con-

trol. D2 H1-1/H3-1, which is a known HA head

antibody,70 was included as a negative control. In

this binding experiment, antibodies were not puri-

fied from the supernatant and thus their concen-

trations were unknown.
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the fine-tuned mBLM correctly predicted 67% (40/60) as HA

stem antibodies (Figure 7A). By contrast, among the 38 anti-

bodies to the anchor stem epitope, only 8% (3/38) were pre-

dicted as HA stem antibodies (Figure 7A). The poor performance

of the fine-tuned mBLM on antibodies to anchor stem epitope

was likely due to lack of antibodies to anchor stem epitope in

the dataset that we assembled (Table S1). In fact, antibodies

to anchor stem epitope have only been extensively character-

ized in the last two years.67 These results suggest that HA

stem antibodies correctly predicted by mBLM would mostly

target the central stem epitope.

Among the 5,561 HA antibodies in the dataset that we assem-

bled (Table S1), 80% (4,469/5,561) have unknown epitopes, of

which 4,453 have heavy-chain sequence information available.

Subsequently, we applied the fine-tuned mBLM to predict the

specificities of these 4,453 antibodies. Although 40% (1,767/

4,453) were predicted as HA stem antibodies, only 3% (119/

4,453) were predicted as HA head antibodies (Figure 7B).

Consistently, many antibodies in our dataset came from studies

that would, by design, result in the enrichment of HA stem anti-

bodies during antibody isolation.43,45,46,59,65,69,71,72 However,

this bias could not fully explain the poor performance of the

fine-tuned mBLM on HA head antibodies. Unlike the highly

conserved HA stem domain,28 HA head domain has a huge

sequence diversity across influenza strains and subtypes. Addi-

tionally, HA head domain has more antibody-binding sites than

the HA stem domain.37 Consequently, HA head antibodies

were expected to have a much higher sequence diversity than

HA stem antibodies. The poor performance of the fine-tuned

mBLM on HA head antibodies was likely due to insufficient se-

quences for each specific binding site for HA head antibodies

in our training set (see discussion).

To experimentally validate our prediction result, 30 antibodies

that were predicted to target HA stem, spanning a range of con-
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fidence scores (0.43 to 0.84), were individually expressed and

tested for binding to stem-only constructs, namely H1 mini-HA

and H3 mini-HA.57,63 H1 mini-HA represented group 1 HA

stem, whereas H3 mini-HA represented group 2 HA stem. We

only include antibodies that are known to bind influenza A HA

in this validation experiment. Antibodies that are known to target

influenza B HA were excluded. Our enzyme-linked immunosor-

bent assay (ELISA) result showed that 57% (17/30) could

bind to either H1 mini-HA or H3 mini-HA or both (Figure 7C).

This validation rate appeared to correlate with the confidence

score of the model. Among the 16 antibodies with confidence

scores > 0.6, 13 (81%) were validated as HA stem antibodies.

By contrast, among the remaining 15 antibodies with confidence

scores < 0.6, only four (29%) were validated as HA stem anti-

bodies. For the 17 validated HA stem antibodies, 11 were en-

coded by IGHV1-18 with QxxV motif in the CDR H3 (confidence

scores range from 0.55 to 0.84), which is a known sequence

feature of HA stem antibodies.43 Five were encoded by IGHV1-

69 with Y98 (confidence scores range from 0.43 to 0.83), which

is another known sequence feature of HA stem antibodies.8

The remaining antibody, AG2-G02 (confidence score = 0.54),

was encoded by IGHV1-2.

AG2-G02 was originally isolated from the plasmablasts of a

healthy donor after receiving a trivalent seasonal vaccine.56 In

other words, AG2-G02 did not come from a study that aimed

to isolate HA stem antibodies. Unlike the other 16 validated HA

stem antibodies, AG2-G02 did not contain any well-character-

ized sequence feature of HA stem antibodies. AG2-G02 has

been shown to target human H3N2 HA, with a preference toward

older strains.56 Consistently, our data showed that AG2-G02

bound strongly to H3 mini-HA but not H1 mini-HA (Figures 7C,

S7A, and S7B). We also showed that AG2-G02 cross-reacted

with an H3N8 HA but not a more recent human H3N2 HA and

other group 2 HAs tested (Figure S7A). Overall, these results
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demonstrate that the fine-tuned mBLM enables discovery of an-

tibodies to known epitopes.

Characterization of an IGHV1-69 HA stem antibody
IGHV1-69 HA stem antibodies have diverse CDR H3 se-

quences.8,73 Although many IGHV1-69 HA stem antibodies are

featured by a Tyr at residue 98, it is neither a necessary nor a suf-

ficient determinant of HA-stem-binding activity.8,73 For example,

some IGHV1-69 HA stem antibodies do not even have a Tyr in

the CDR H3.8 Despite the high sequence diversity of IGHV1-69

HA stem antibodies, mBLM was able to predict certain IGHV1-

69 HA stem antibodies with high confidence, as exemplified by

310-18A569 (confidence score = 0.81), which has a Levenshtein

distance of 25 (i.e., �21% sequence divergence) to the most

similar antibody in the training set. Biolayer interferometry

indicated that 310-18A5 had a strong binding affinity against

the HA from H1N1 A/Solomon Island/3/2006 (KD = 0.2 nM,

Figure S7C) as well as H1mini-HA (KD = 1.0 nM, Figure S7D). Be-

sides, 310-18A5 had neutralization activity against two antigen-

ically distinct H1N1 strains (Figure S7E). Consistently, cryo-EM

analysis confirmed that 310-18A5 bound to the HA stem domain

with a similar approaching angle as other IGHV1-69 HA stem an-

tibodies that have structural information available (Figures S7F

and S7G; Table S4).29,46,47,49 This observation substantiates

that IGHV1-69 HA stem antibodies, albeit with high sequence

divergence, converge to similar binding modes.

DISCUSSION

Although influenza HA antibodies have been studied over de-

cades, there has been a lack of effort to summarize information

about these antibodies. In this study, we performed a large-scale

analysis of more than 5,000 influenza HA antibodies by mining

research publications and patents. Although many recurring

sequence features of influenza HA antibodies are reported in in-

dividual studies,7,8,29,30,43,54,67 our results revealed additional

ones that have not been described, to the best of our knowledge.

For example, our study discovered the enrichment of YGD motif

in the CDR H3 of HA head antibodies as well as multiple

public clonotypes to influenza type B HA. We further developed

a language model for antibody specificity prediction, which was

subsequently applied to reveal sequence determinants of HA

stem antibodies and discover HA stem antibodies. Overall, this

work not only advances the molecular understanding of influ-

enza HA antibodies but also provides an important resource

for the antibody research community (Table S1).

Discovering antibodies to a specific antigen of interest typi-

cally requires less effort than epitope mapping. Consistently,

epitope information (head or stem) is available for only �20%

of HA antibodies in our dataset. Nevertheless, we were able to

utilize these �20% of HA antibodies to train mBLM to identify

HA stem antibodies among the remaining�80%with no epitope

information. This result demonstrates that mBLM can accelerate

epitope mapping. A potential application of mBLM is to map the

epitopes of antibodies that are discovered from single-cell B cell

receptor sequencing of plasmablasts or antigen-specific mem-

ory B cells. We believe that mBLM synergizes with existing

high-throughput antibody discovery approaches to streamline

the analysis of antibody responses. Although our work here
applied mBLM to predict antibody specificity based on seven

specificity categories, it can be fine-tuned to extend to any spec-

ificities, as long as sufficient and diverse antibody sequences

with such specificities are available. In this respect, the contin-

uous improvement of the speed of antibody discovery and

characterization will also be beneficial, if not essential.3,4 Given

that many antibodies with different specificities are character-

ized in the literature, future generalization of mBLM to additional

antibody specificities will likely be achievable by extensive data

mining.

Similar to any machine learning algorithm, a key requirement

formBLM tomake accurate predictions is to have a large dataset

for training. Therefore, an important question is: how many anti-

bodies are needed for model training? The answer may vary

among specificity categories. For example, mBLM prediction

of antibodies to HA stem (central stem in particular) worked quite

well with around 500 HA stem antibodies in the training set.

Conversely, the performance of mBLM on HA head antibodies

was less successful, although the number of HA head antibodies

in our training set was only �25% less than that of HA stem

antibodies. This difference indicates that accurate prediction of

HA head antibodies by mBLM will require a lot more HA head

antibodies in the training set. One possible explanation is that

the HA head domain has more antibody-binding sites than the

HA stem domain. Although most antibodies against the HA

stem domain target the central stem epitope and the more

recently discovered anchor stem epitope,66,67 antibodies

against the HA head domain target not only the five major anti-

genic sites but also lateral patch, receptor-binding site, vestigial

esterase subdomain, and trimer interface.37 The larger number

of antibody-binding sites in the HA head domain would lead to

a higher sequence diversity of HA head antibodies. Based on

our prediction results of HA central stem antibodies, we estimate

that at least 500 antibodies to a specific antibody-binding site

are needed for training mBLM to achieve accurate prediction.

Accordingly, accurate prediction of HA head antibodies will

require at least a few thousands of HA head antibodies in the

training set. If we further account for the hypervariability of the

HA head domain across HA subtypes, the number of HA head

antibodies required would most likely be a magnitude higher.

As more antibody sequences become available for different

HA antibody-binding sites, future versions of mBLMmay provide

a finer epitope classification of the HA. For example, instead

of treating HA head domain as a single specificity category,

different antibody-binding sites within theHA head domain could

each be classified as their own specificity categories. However,

fine epitope mapping of a large number of antibodies is unlikely

to be realized in the short term due to the tedious experimental

efforts required. In comparison, mapping antibody specificity

to a protein domain, such as the HA head domain, is more prac-

tical experimentally. As demonstrated by our saliency score

analysis of HA stem antibodies, mBLM is able to identify sub-

categories of antibodies within a given specificity category.

Thus, binning different antibody-binding sites within a protein

domain as a single specificity category provides a short-term

solution until sufficient antibody sequences for a given anti-

body-binding site are available.

The success of applying a deep learning model to protein

research can largely be attributed to the presence of databases
Immunity 57, 2453–2465, October 8, 2024 2461
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such as Protein Data Bank (PDB),74 UniProt,75 and UniRef,76

which describe the sequence-structure-function relationships.

Similarly, most, if not all, existing models for antibody specificity

prediction were trained using structural information of antibody-

antigen interactions in PDB.16 Nevertheless, the epitopes of

most antibodies in the literature aremapped by non-structural ap-

proaches, such as competition or mutagenesis experiments.77

These epitope mapping data, despite being obtained by non-

structural approaches, are tremendously useful for training a

model for antibody specificity prediction, as shown by our study

here. Consequently, future efforts should focus on establishing a

centralized database that describes the sequence-specificity

relationship for antibodies, even for those without structural infor-

mation available. Such database will allow the power of deep

learning models to be fully harnessed in antibody research.
Limitations of the study
We acknowledge that some antibodies are polyreactive or poly-

specific,78 as exemplified by the antibody 2G12, which cross-re-

acts with HIV envelope,79 influenzaHA,80 and SARS-CoV-2 S.81 A

limitation of the current model architecture of mBLM is that it did

not account for polyreactivity or polyspecificity. A potential

solution is to modify the model architecture for multi-label classi-

fication82 to predict polyreactivity or polyspecificity. Similarly,

multi-label classification should also enable prediction of antibody

breadth. However, most of the known antibodies have not been

tested for polyreactivity or polyspecificity. Although antibody

breadth is more commonly tested, the panels of viral strains

used in different studies are almost always different. As a result,

the major barrier for adopting multi-label classification for anti-

body specificity prediction is the limited data availability. Another

limitation of mBLM is that it does not take biophysical knowledge

into account. If the underlying physical laws are also encoded by

the model, the amount of data required for accurate prediction

could be substantially reduced.82,83 Thus, the performance of

mBLM should improve by incorporating antibody-antigen struc-

tural information into model training, especially for specificity cat-

egories with limited known antibody sequences. Consistently, a

previous study shows that sequence features derived from

the structural analysis of a single antibody-antigen complex facil-

itate discovery of HA head antibodies.84 Because many antibody-

antigen complex structures are publicly available, development of

a biophysics-informed mBLM is warranted in the future.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

6x-His Tag Monoclonal Antibody (HIS.H8) Thermo Fisher Scientific Cat# 14-6657-82; RRID:AB_2572898

HRP Rat Anti-Mouse Ig, k Light Chain BD Biosciences Cat# 559751; RRID:AB_397315

Goat anti-Human IgG (H+L) Secondary Antibody, HRP Thermo Fisher Scientific Cat# A18805; RRID:AB_2535582

Bacterial and virus strains

NEB 5-alpha Competent E. coli New England Biolabs Cat# C2987H

A/Puerto Rico/8/1934 (H1N1) N/A N/A

A/Michigan/45/2015 (H1N1) N/A N/A

Chemicals, peptides, and recombinant proteins

Lipofectamine 2000 Fisher Scientific Cat# 11668-019

Cellfectin II Reagent Gibco Cat# 10362-100

TPCK-Trypsin Thermo Fisher Scientific Cat# 20233

Tween 20 Fisher Scientific Cat# BP337-100

H3N2 A/Darwin/9/2021 BEI Resources cat #: NR-59305

H3N8 A/duck/Shantou/1283/2001 BEI Resources cat #: NR-28916

H4N6 A/mallard/Alberta/455/2015 BEI Resources cat #: NR-51128

H7N3 A/Canada/rv444/2004 BEI Resources cat #: NR-43740

H7N9 A/Hong Kong/125/2017 BEI Resources cat #: NR-51367

H7N9 A/Guangdong/17SF003/2016 BEI Resources cat #: NR-51203

H7N9 A/Hunan/02285/2017 BEI Resources cat #: NR-51195

H7N9 A/Anhui/1/2013 BEI Resources cat #: NR-44081

H7N9 A/Shanghai/1/2013 BEI Resources cat #: NR-44079

H10N8 A/Jiangxi-Donghu/346/2013 BEI Resources cat #: NR-49440

1-Step Ultra TMB-ELISA Substrate Solution Thermo Fisher Scientific Cat# 34028

Critical commercial assays

QIAprep Spin Miniprep Kit Qiagen Cat# 27106

ZymoPure Midiprep (50 preps) Fisher Cat# NC0919795

NEBuilder HiFi DNA Assembly Master Mix New England Biolabs Cat# E2621L

Deposited data

Collection of antibody information This study Table S1

Cryo-EM map of 310-18A5 Fab + SI06 HA This study EMDB: EMD-41849

Custom scripts and model This study https://doi.org/10.5281/zenodo.11359149

Experimental models: Cell lines

Sf9 cell ATCC CRL-1711; PRID:CVCL_0549

MDCK-SIAT1 cells Sigma-Aldrich Cat# 05071502-1VL

HEK293T cells N/A N/A

Expi293F Cells Thermo Fisher Scientific Cat# A14527

Recombinant DNA

pFastBac-miniHA-H1 This study N/A

pFastBac-miniHA-H3 This study N/A

phCMV3-Ab IgG heavy chain This study N/A

phCMV3-Ab Fab heavy chain This study N/A

phCMV3-Ab IgG kappa light chain This study N/A

phCMV3-Ab IgG lambda light chain This study N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Octet analysis software 9.0 Sartorius N/A

R https://www.r-project.org/ N/A

Python https://www.python.org/ N/A

IgBLAST Ye et al.85 N/A

PyIR Soto et al.86 N/A

Logomaker Tareen and Kinney87 N/A

Pytorch https://pytorch.org/ N/A

Transformers https://huggingface.co/

docs/transformers/en/index

N/A

Other

Octet Anti-Penta-HIS (HIS1K) Biosensors Sartorius Cat# 18-5120

Nunc MaxiSorp flat-bottom 96 well plate Thermo Fisher Scientific Cat# 44-2404-21

Microplate, 96 Well, PP, F-Bottom Grenier Cat# 655209

Sf-900 II SFM Thermo Fisher Scientific Cat# 10902088

MEM medium Thermo Fisher Scientific Cat# 11095098

DMEM medium Thermo Fisher Scientific Cat# 11995065

Opti-MEM I Reduced Serum Medium Thermo Fisher Scientific Cat# 31985070

GlutaMAX Supplement Thermo Fisher Scientific Cat# 35050061

Trypsin-EDTA (0.25%), phenol red Thermo Fisher Scientific Cat# 25200056

Penicillin-Streptomycin Thermo Fisher Scientific Cat# 15140122

Fetal Bovine Serum (FBS) Thermo Fisher Scientific Cat# 16000044

Phosphate-buffered saline (PBS), 1X VWR Cat# 21-040-CM
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RESOURCE AVAILABILITY

Lead contact
Information and requests for resources should be directed to and will be fulfilled by the lead contact, Nicholas C. Wu (nicwu@

illinois.edu).

Materials availability
All plasmids generated in this study are available from the lead contact without restriction.

Data and code availability
d The curated influenza antibody dataset is in Table S1.

d The cryoEMmap of 310-18A5 Fab in complex with SI06 HA has been deposited in the Electron Microscopy Data Bank (EMDB)

with accession code EMD-41849.

d Custom python scripts for all analyses and model training have been deposited to: http://www.doi.org/10.5281/zenodo.

11359137.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODELS AND STUDY PARTICIPANTS DETAILS

Cell lines
HEK293T cells (human embryonic kidney cells, female) and MDCK-SIAT1 cells (Madin-Darby canine kidney with overexpression of

human 2,6-sialtransferase, female, Sigma-Aldrich) were cultured in Dulbecco’s modified Eagle’s medium (DMEM high glucose;

Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco), 1% penicillin-streptomycin (Gibco), and 13

GlutaMax (Gibco). Cell passaging was performed every 3 to 4 days using 0.05% Trypsin-EDTA solution (Gibco). Expi293F cells (hu-

man embryonic kidney cells, female, ATCC) were maintained in Expi293 Expression Medium (Thermo Fisher Scientific). Sf9 cells

(Spodoptera frugiperda ovarian cells, female, ATCC) were maintained in Sf-900 II SFM medium (Thermo Fisher Scientific).
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Recombinant influenza virus
Recombinant influenza viruses were rescued using the eight-plasmid reverse genetics system.88 Briefly, plasmids encoding the eight

segments of the influenza genome were transfected into a co-culture of HEK293T cells and MDCK-SIAT1 cells (ratio of 6:1) at 60%.

Transfection was performed using Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer’s instructions. At 24

hours post-transfection, cells were washed twice with PBS and cell culture medium was replaced with OPTI-MEM medium supple-

mented with 0.8 mg mL�1 Tosyl phenylalanyl chloromethyl ketone (TPCK)-trypsin. The virus in the supernatant was harvested at 48

hours post-transfection and plaque-purified before growing to a high titer stock in MDCK-SIAT1 cells. All plaque-purified viruses

were sequenced to confirm the absence of mutations.

METHOD DETAILS

Collections of antibody information
Sequences of each humanmonoclonal antibody were from the original papers and/or NCBI GenBank database (Tables S1 and S3).38

For influenza HA antibodies, additional information, including binding specificity, donor IDs and PDB codes, was collected from the

original papers (Table S1). Putative germline genes were identified by IgBLAST.85,86 Some studies isolated antibodies from multiple

donors, but the donor identity for each antibody was not always clear. For example, some studies mixed B cells frommultiple donors

before isolating individual B cell clones. Since the donor identity could not be distinguished among those antibodies, we considered

them from the same donor with ‘‘donors’’, ‘‘vaccinees’’, ‘‘patients’’, or ‘‘cohorts’’ as the suffix of the donor ID. In addition, although

two studies by Andrews et al.71,72 had shared donors from the same clinical trial (VRC 315, ClincialTrials.gov identifier

NCT02206464), their antibody naming schemes were different. The IDs for these donors had a prefix ‘‘315’’ as described in the first

study.71 While the prefixes of antibody names from the first study matched the donor ID (e.g. antibody 315-02-1F07 was from donor

315-02),71 some antibody names from the second study did not (e.g. antibody name with prefix ‘‘20A-518-30’’).72 Therefore, we as-

signed the donor ID to the antibodies from the second study by CDR H3 clustering. For example, since all CDR H3 clusters that con-

tained antibodies with prefix 20A-605-30 also contained antibodies from 315-02, antibodies with prefix 20A-605-30 were assigned

with a donor ID of 315-02.

Identification of clonotypes and public clonotypes
Using a deterministic clustering approach, CDRH3 sequences that had the same length and at least 80%amino acid sequence iden-

tity were assigned to the same CDR H3 cluster. As a result, CDR H3 of every antibody in a CDR H3 cluster would have >20% differ-

ence in amino acid sequence identity with that of every antibody in another CDR H3 cluster. A clonotype was defined as antibodies

that shared the same IGHV/IGK(L)V genes with CDR H3s from the same CDR H3 cluster. A public clonotype was defined as a clo-

notype with antibodies from at least two donors. The epitope of each public clonotype was defined by its members. None of the pub-

lic clonotypes contained antibodies targeting different epitopes.

Germline gene usage analysis
To avoid being confounded by B-cell clonal expansion, a single clonotype from the same donor was considered as one antibody that

represented the consensus sequence of the given clonotype. While all antibodies within a clonotype had the same IGHV/IGK(L)V

genes (see above), theymay not have the same IGHDgene, often due to ambiguity in IGHD-gene assignment by IgBlast. For germline

gene usage analysis, the most common IGHD gene within a clonotype from the same donor was considered.

Hydrophobic score of CDR H3
The hydrophobic score for a CDR H3 with a length n was computed as follow:

Hydrophobic score = � 103

Pn
i = 1 WWðamino ocidiÞ

n

whereWW represents theWimley-White whole residue hydrophobicity scale89 and amino acidi represents the amino acid at position

i. A higher hydrophobic score represents higher hydrophobicity. If the CDR H3 had an odd number of residues, the CDR H3 tip was

defined as the three residues at the center of the CDR H3 sequence. If the CDR H3 had an even number of residues, the CDR H3 tip

was defined as the four residues at the center of the CDR H3 sequence. The hydrophobic score of CDR H3 tip was computed in the

same manner as that of CDR H3. To avoid being confounded by B-cell clonal expansion, a single clonotype from the same donor is

considered as one antibody, in which the CDR H3 sequence represented the consensus among all members in the given clonotype.

Datasets for model pre-training
A total of 267,871 paired antibody sequences from memory B cell sequencing data were downloaded from Observed Antibody

Space database (BType = Memory-B-Cells).39 In addition, 12,487 paired antibody sequences were downloaded from NCBI

GenBank database.38 These antibody sequences were compiled into a single dataset and deduplicated by 95% sequence identity

threshold. The deduplicated dataset was then partitioned into training (n = 229,773), validation (n = 15,375) and test sets (n = 8,660).

The test set was generated by random sampling with different levels of maximum sequence identity to the training set (50%, 60%,

70%, 80%, and 90%), allowing robust evaluation of model performance. Of note, 90% maximum sequence identity indicated that
e3 Immunity 57, 2453–2465.e1–e7, October 8, 2024
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none of the antibody sequences in the test set had >90% sequence identity with any of the sequences in the training set. In other

words, the highest pairwise sequence identity between the test and training sets was 90%. To generate a balanced and robust

training set, we implemented an upsampling technique based on the IGK(L)V genes. Specifically, we identified IGK(L)V genes

with less than 5,000 counts and then performed random sampling to augment the dataset, ensuring each of these IGK(L)V genes

had precisely 5,000 sequences. After upsampling, our training set had 467,018 paired antibody sequences. Upsampling only applied

to the training set, but not the validation and test sets.

To evaluate the performance of ourmodel, perplexity wasmeasured using the test set. Perplexity was defined as the exponential of

the negative log-likelihood of the sequence as follows:

PerplexityðxÞ = exp
�� logp ðxieM

��xj;MÞ
�

where mask M is a random variable denoting a set of tokens from input sequence x. Specifically, 15% of the input sequence un-

derwent replacement by the mask M. Here, the perplexity was calculated as exponent of the loss obtained from the model. This

approach provided a measure of how well the model aligned with the original sequence, where lower perplexity values indicated

a better fit. The perplexity of our mBLM was 2.63, whereas that of ESM2 is 3.62.

Sequences of antibodies with known specificities for model fine-tuning
Sequences of antibodies to ‘‘HA:Head’’ (influenza HA head) and ‘‘HA:Stem’’ (influenza HA stem) were from the curated dataset in this

present study. Sequences of antibodies to ‘‘S:NTD’’ (SARS-CoV-2 spike NTD), ‘‘S:RBD’’ (SARS-CoV-2 spike RBD), and ‘‘S:S2’’

(SARS-CoV-2 spike S2) were from our previous study.15 Sequences of antibodies to ‘‘HIV’’ (human immunodeficiency virus) and

‘‘Others’’ (none of the above) were collected from NCBI GenBank database.38 Antibodies to ‘‘HIV’’ were classified as those from

GenBank with the word ‘‘HIV’’ in the ‘‘References’’ or ‘‘Description’’ fields. Here, only heavy chain variable domain sequences were

used for model fine-tuning. We performed sequence clustering with varying sequence identity cutoff (50%, 60%, 70%, 80%, 90%,

and 95%) using cd-hit (-M 32000 -d 0 -T 8 -n 5 -aL 0.8 -s 0.95 -uS 0.2 -sc 1 -sf 1).90 We observed that at a cutoff of 90% sequence

identity, sequences of antibodies with different specificities could be found within the same cluster, indicating that a stringent

sequence identity cutoff of >90% was needed for accurate specificity prediction by traditional sequence clustering method. Based

on this result, antibodies with unknown specificities, but shared >90% sequence identity with any antibody that belonged to ‘‘HA:

Head’’, ‘‘HA:Stem’’, ‘‘HIV’’, ‘‘S:NTD’’, ‘‘S:RBD’’, or ‘‘S:S2’’, were discarded and not assigned to the ‘‘Others’’ category. Our final dataset

for model fine-tuning contained the heavy chain sequences from a total of 388 antibodies to ‘‘HA:Head’’, 509 antibodies to ‘‘HA:Stem’’,

6,995 antibodies to ‘‘HIV’’, 399 antibodies to ‘‘S:NTD’’, 4112 antibodies to ‘‘S:RBD’’, 682 antibodies to ‘‘S:S2’’, and 15,043 antibodies

to ‘‘Others’’. This dataset was then partitioned into training, validation and test sets, with an approximate ratio of 8:1:1. To split the

sequences between training and test sets, all sequences in the training and test sets were first clustered using cd-hit using a sequence

identity cutoff of 80%.90 Then sequenceswithin the same cluster would either be assigned to the training set or test set. In other words,

sequences in the training set and sequences in the test set would not fall into the same cluster. We further applied amanual cleanup to

ensure that the training and test sets had aminimumpairwise Levenshtein distance of 10.We also applied the upsampling technique to

the training set to ensure the number of antibody sequences in different specificity categories was balanced.

Pre-trained memory B cell language model (mBLM)
Masked Language Modeling (MLM)

Masked language modeling such as Bidirectional Encoder Representations from Transformers (BERT)91 has been shown as a

powerful pretraining technique for language models, enabling contextual information to be captured and generalized to various

downstream tasks. Here, mBLM was trained to predict the masked amino acids of input sequence based on surrounding context:

LMLM = �
X

ieM

logpðxijxcontextÞ

where M represents a randomly generated mask that includes 15% of positions i in the sequence xi. The model was tasked with

predicting the identity of the amino acids xi in themask from the surrounding context xcontext. Being trained to predict masked tokens,

mBLM learned to understand the relationships between amino acid residues in a sequence, leading to a robust and effective lan-

guage representations.

mBLM architecture

We adapted RoBERTa92 as the basic model architecture, with the following hyperparameters:

Tokenizer: ESM218

Token length: 150

Number of Layers: 6

Number of Attention heads: 12

Embedding dimension: 768

Feed-Forward Hidden Size: 3072

Dropout: 0.1
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mBLM pre-training

mBLMwas pre-trained with a context size of 250 tokens, which represented the amino acid sequences of both heavy and light chain

variable domains. Since the total length of heavy chain and light chain variable domains was generally less than 250 amino acids,

separation tokens were added in between. We adapted tokenizer from ESM2,18 which converted amino acids into numerical repre-

sentations (a total of 33 tokens including special tokens like [MASK]). Themodel was trained bymasked languagemodeling (MLM) as

described above. The model was optimized using Adamwith b1 = 0.9, b2 = 0.999, ˛ = 1e-08, and a learning rate of 5e-05. The model

was trained using Huggingface transformers toolkit and efficiently distributed across one NVIDIA A100 and three NVIDIA RTX A5000.

The entire pre-training process was completed within 24 hours, showcasing the efficiency and scalability of our approach. Different

model architectures were explored for the pre-training process. In general, increasing the model depth (in terms of number of layers)

improved performance when the number of layers was small, yet no significant improvement was observed beyond six layers.

Model fine-tuning for specificity prediction
Model details

The final-layer embeddings from the pre-trained mBLMwere extracted as the initial hidden state for the specificity prediction model.

This initial state was then fed through a multi-head self-attention block and a multi-layer perceptron (MLP) block. An attention block

was incorporated between the mBLM embeddings and the MLP significantly to enhance model interpretability. Within the attention

block, the self-attention layer was followed by a layer normalization to normalize the output. Subsequently, an adaptive average pool-

ing was applied to the attended representation to aggregate information across sequence dimension, resulting in a fixed size tensor

with a shape that was defined by batch size and hidden dimension. The flattened tensor was then passed through the MLP block,

comprising a series of fully connected layers, ReLU activation functions, and dropout operations. These layers transformed the high-

dimensional representation to low-dimensional features. Finally, the output was passed through a fully connected layer with seven

output units, each represented one of the seven specificity categories. Of note, experimenting with different layers of classifier did not

yield significant difference in performance.

Resampling procedure

To assess the robustness of our mBLM in predicting antibody specificity, a tailored resampling technique was employed. This

involved random down/upsampling of the curated dataset for each specificity category, ensuring a balanced representation during

model training. Subsequently, the dataset was randomly split based on sequence similarity as described above. These resampling

and splitting processes were iterated 15 times, generating different training and test sets in each round. Subsequently, the model

underwent 15 rounds of training and testing, and its performance was evaluated for each round. The overall model performance

was quantified as the average across all 15 rounds.

mBLM fine-tuning

Themodel was trained using the PyTorch Lightning framework using Adam optimizer with a learning rate of 2e-05 and a batch size of

32. Early stopping was applied to monitor the validation loss.

ESM2 fine-tuning

Similar to mBLM fine-tuning, the final representations of ESM2 model (33 layers and 650 million parameters) were extracted as the

initial hidden state for specificity prediction. This initial state was then fed through the attention and MLP blocks. The model was

trained using the PyTorch Lightning framework using Adam optimizer with a learning rate of 1e-04 and a batch size 32. Early stopping

was applied to monitor the validation loss. The best model checkpoint was saved.

kNN classifier

The k-Nearest Neighbors (KNN) classification algorithm was implemented to predict antibody specificity using the sklearn.neigh-

bors.KNeighborsClassifier module.93 Briefly, the antibody sequences were encoded via the one-hot encoding scheme, and the en-

coded sequences were fed into the KNN classifier, with a range of k values, including 1, 3, 5, 10, 20, 30, 50, 100, and 500. F1 score

and confusion matrices were computed to evaluate classification accuracy for each k value. The optimal k value was selected based

on the resulting confusion matrices.

Performance Metrics

The fine-tuned model was evaluated using the micro F1 score, which counts the total true positives, false negatives and false pos-

itives and represents the globally arithmetic mean of the harmonic means of precision and recall, as well as confusion matrix. The

calculations were conducted using sklearn metrics functions using a threshold of 0.5 for class labeling.93

Model Interpretation
Gradient-weighted Class Activation Mapping (Grad-CAM) analysis

Grad-CAM, which is a class-discriminative localization technique that provides visual explanations for predictions made by CNN-

based models,40 was used to identify residues in a protein sequence that are important for the prediction of a particular function.41

To calculate Grad-CAM, we first computed the importance weights ac
i for the input sequence:

ac
i =

1

D

X

d e D

vyc

vxid
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where ac
i represents the global average pooling over embedding dimension D for the importance weights of residue i for predicting

specificity class c. Then, the saliency map was obtained in a residue space by generating the weighted forward activation maps Ai,

followed by:

Sc
i = max

�
0;ac

i A
i
�

whereSc
i represents the relative importance (saliency score) of residue i to specificity class c. This function ensured that only features

with positive influence on the functional label were preserved.

Saliency map clustering

We applied hierarchical clustering withWard’s method to perform saliency map clustering. Euclidean distance was used to calculate

the distance matrix that quantified the pairwise dissimilarity between saliency maps. We then used the linkage function to define the

hierarchical relationships between the samples. Finally, clustered results were visualized using clustermap function in seaborn.94 Sa-

liency map indicated different ‘‘attentions’’ on the final-layer embeddings of pre-trained mBLM. Therefore, clustering could also be

performed using the final layer embeddings of the pre-trained mBLM. However, clustering on final layer embeddings will result in

clusters whose saliency maps were too divergent to be amenable to downstream sequence motif analysis.

Sequence logo analysis

To identify antibody sequence features within each cluster, we employed a thresholding approach based on the saliency scores.

Specifically, for each antibody sequence, residues with a saliency score >0.5 were identified. The amino acid sequences at those

residues were then extracted. For each residue position in each cluster, extracted amino acid sequences with the same identity

were counted. Sequence logos were generated by Logomaker in Python,87 with the height of each amino acid proportion to its count.

Structural analysis of saliency score

For those HA stem antibodies with structural information available, the relationship between saliency score of each residue and its

minimum distance to HA was examined. Distance was calculated using the application programming interface in PyMOL

(Schrödinger).

Expression and purification of mini-HA and HA
The H1 mini-HA (#4900),63 H3 mini-HA,57 H1N1 A/Solomon Island/3/2006 HA were fused with N-terminal gp67 signal peptide and a

C-terminal BirA biotinylation site, thrombin cleavage site, trimerization domain, and a 6xHis-tag, and then cloned into a customized

baculovirus transfer vector.48 Subsequently, recombinant bacmid DNA was generated using the Bac-to-Bac system (Thermo Fisher

Scientific) according to the manufacturer’s instructions. Baculovirus was generated by transfecting the purified bacmid DNA into

adherent Sf9 cells using Cellfectin reagent (Thermo Fisher Scientific) according to the manufacturer’s instructions. The baculovirus

was further amplified by passaging in adherent Sf9 cells at a multiplicity of infection (MOI) of 1. Recombinant mini-HA protein was

expressed by infecting 1 L of suspension Sf9 cells at an MOI of 1. On day 3 post-infection, Sf9 cells were pelleted by centrifugation

at 4000 3 g for 25 min, and soluble recombinant mini-HA and HA were purified from the supernatant by affinity chromatography us-

ing Ni Sepharose excel resin (Cytiva) and then size exclusion chromatography using a HiLoad 16/100 Superdex 200 prep grade col-

umn (Cytiva) in 20 mM Tris-HCl pH 8.0, 100 mMNaCl. The purified mini-HA protein was concentrated by Amicon spin filter (Millipore

Sigma) and filtered by 0.22 mm centrifuge tube filters (Costar). Concentration of the protein was determined by nanodrop (Fisher Sci-

entific). Proteins were subsequent aliquoted, flash frozen by dry-ice ethanol mixture, and stored at -80 �C until used. HA proteins from

the following strains were obtained from BEI Resources: H3N2 A/Darwin/9/2021 (cat #: NR-59305), H3N8 A/duck/Shantou/1283/

2001 (cat #: NR-28916), H4N6 A/mallard/Alberta/455/2015 (cat #: NR-51128), H7N3 A/Canada/rv444/2004 (cat #: NR-43740),

H7N9 A/Hong Kong/125/2017 (cat #: NR-51367), H7N9 A/Guangdong/17SF003/2016 (cat #: NR-51203), H7N9 A/Hunan/02285/

2017 (cat #: NR-51195), H7N9 A/Anhui/1/2013 (cat #: NR-44081), H7N9 A/Shanghai/1/2013 (NR-44079), and H10N8 A/Jiangxi-

Donghu/346/2013 (cat #: NR-49440).

Expression and purification of IgG
The heavy and light chain genes of the obtained antibody were synthesized as eBlocks (Integrated DNA Technologies), and then

cloned into human IgG1 and human kappa or lambda light chain expression vectors usingGibson assembly according to a previously

described method.95 The plasmids were transiently co-transfected into HEK293T cells at a mass ratio of 2:1 (HC:LC) using Lipofect-

amine 2000 (Thermo Fisher Scientific). On day 3 post-transfection, supernatant containing the IgG was collected for binding exper-

iment. The expression of IgG was confirmed by SDS-PAGE gel electrophoresis and Coomassie Blue R-250 staining. Selected IgGs

were purified using a CaptureSelect CH1-XL Pre-packed Column (Thermo Fisher Scientific).

Expression and purification of Fab
Fab heavy and light chains were cloned into phCMV3 vector. The plasmids were transiently co-transfected into Expi293F cells at a

mass ratio of 2:1 (HC:LC) using ExpiFectamine 293 Reagent (Thermo Fisher Scientific). After transfection, the cell culture supernatant

was collected at 6 days post-transfection. The Fab was then purified using a CaptureSelect CH1-XL pre-packed column (Thermo

Fisher Scientific).
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Enzyme-linked immunosorbent assay (ELISA)
Nunc MaxiSorp ELISA plates (Thermo Fisher Scientific) were utilized and coated with 100 mL of recombinant proteins at a concen-

tration of 1 mgml-1 in a 13 PBS solution. The coating process was performed overnight at 4�C. On the following day, the ELISA plates

were washed three times with 13 PBS supplemented with 0.05% Tween 20, and then blocked using 200 mL of 13 PBSwith 5% non-

fat milk powder for 2 hours at room temperature. After the blocking step, 100 mL of IgGs from the supernatant were added to eachwell

and incubated for 2 hours at 37�C. The ELISA plates were washed three times to remove any unbound IgGs. Next, the ELISA plates

were incubated with horseradish peroxidase (HRP)-conjugated goat anti-human IgG antibody (1:5000, Invitrogen) for 1 hour at 37�C.
Subsequently, the ELISA plates were washed five times using PBS containing 0.05% Tween 20. Then, 100 mL of 1-Step Ultra TMB-

ELISA Substrate Solution (Thermo Fisher Scientific) was added to eachwell. After 15min incubation, 50 mL of 2MH2SO4 solution was

added to each well. The absorbance of each well was measured at a wavelength of 450 nm using a Sunrise absorbance microplate

reader (BioTek Synergy HTX Multimode Reader).

Biolayer interferometry binding assay
Binding assays were performed by biolayer interferometry (BLI) using an Octet Red96e instrument (FortéBio) at room temperature as

described previously.96 Briefly, His-tagged mini-HA proteins at 0.5 mM in 13 kinetics buffer (13 PBS, pH 7.4, 0.01% w/v BSA and

0.002% v/v Tween 20) were loaded onto anti-Penta-HIS (HIS1K) biosensors and incubated with the indicated concentrations of

Fab or IgG. The assay consisted of five steps: (1) baseline: 60 s with 13 kinetics buffer; (2) loading: 60 s with His-tagged mini-HA;

(3) baseline: 60 s with 13 kinetics buffer; (4) association: 60 s with Fab or IgG samples; and (5) dissociation: 60 s with 13 kinetics

buffer. For estimating the exact KD, a 1:1 binding model was used.

Virus neutralization assay
MDCK-SIAT1 cells were seeded in a 96-well, flat-bottom cell culture plate (Thermo Fisher). The next day, serially diluted

monoclonal antibodies were mixed with an equal volume of virus and incubated at 37�C for 1 hour. The antibody/virus mixture

was then incubated with the MDCK-SIAT1 cells at 37�C after the cells were washed twice with PBS. Following a 1-hour incubation,

the antibody/virus mixture was replaced with Minimum Essential Medium (MEM) supplemented with 25 mM of 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) and 1 mg mL-1 of TPCK-trypsin. The plate was incubated at 37�C for 72 hours and the pres-

ence of virus was detected by hemagglutination assay. The results were analyzed using Prism software (GraphPad).

Cryogenic electron microscopy (cryo-EM) analysis
To prepare cryoEM grid, an aliquot of 4 mL purified protein at�0.5 mgmL-1 concentration with 7.5 mM lauryl maltose neopentyl glycol

(LMNG) was applied to a 200-mesh Quantifoil 2Um Cu grid that was pre-treated with glow-discharge. Subsequently, the grid was

blotted in a Vitrobot Mark IV machine (force = 0, time = 3 seconds), and plunge-frozen in liquid ethane. The grid was then loaded

in a ThermoFisher Glacios microscope with a Volta Phase Plate and Falcon4 Direct Electron Detector. Data collection was done

with Smart EPU software. Images were recorded at 130,0003 magnification, corresponding to a pixel size of 0.96 Å/pix at super-

resolution mode of the camera. A defocus range of -0.6 mm to -3 mmwas set. A total dose of 52.76 e�/Å2 of each exposure was frac-

tionated into 40 frames. CryoEM data processing was performed with cryoSPARC v4.3.0 following regular single-particle proced-

ures. The CryoEM experiment was performed at the UIUC Materials Research Laboratory Central Research Facilities. Statistics

are provided in Table S4. Structure was visualized using UCSF ChimeraX v1.5 (UCSF).

QUANTIFICATION AND STATISTICAL ANALYSIS

Standard deviation for KD estimation was computed by Octet analysis software 9.0. Student’s t-tests were performed in R.
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